The rotational spectrum of the FeD radical in its X4Δ state, measured by far-infrared laser magnetic resonance

Abstract

Transitions between the spin-rotational levels of the FeD radical in the v = 0level of the X 4Δ ground state have been detected by the technique of laser magnetic resonance at far-infrared wavelengths. Pure-rotational transitions have been observed for the three lowest spin components. Lambda-type doubling is resolved on all the observed transitions; nuclear hyperfine structure is not observed. The energy levels of FeD are strongly affected by the breakdown of the Born–Oppenheimer approximation and cannot be modeled accurately by an effective Hamiltonian. The data are therefore fitted to an empirical formula to yield term values and g-factors for the various spin-rotational levels involved

    Similar works