A transition from local to global shear zones is reported for granular flows
in a modified Couette cell. The experimental geometry is a slowly rotating drum
which has a stationary disc of radius R_s fixed at its bottom. Granular
material, which fills this cell up to height H, forms a wide shear zone which
emanates from the discontinuity at the stationary discs edge. For shallow
layers (H/R_s < 0.55), the shear zone reaches the free surface, with the core
of the material resting on the disc and remaining stationary. In contrast, for
deep layers (H/R_s > 0.55), the shear zones meet below the surface and the core
starts to precess. A change in the symmetry of the surface velocities reveals
that this behavior is associated with a transition from a local to a global
shear mode.Comment: 4 pages, 7 figures, submitte