Hogwild! implements asynchronous Stochastic Gradient Descent (SGD) where
multiple threads in parallel access a common repository containing training
data, perform SGD iterations and update shared state that represents a jointly
learned (global) model. We consider big data analysis where training data is
distributed among local data sets in a heterogeneous way -- and we wish to move
SGD computations to local compute nodes where local data resides. The results
of these local SGD computations are aggregated by a central "aggregator" which
mimics Hogwild!. We show how local compute nodes can start choosing small
mini-batch sizes which increase to larger ones in order to reduce communication
cost (round interaction with the aggregator). We improve state-of-the-art
literature and show O(K) communication rounds for heterogeneous data
for strongly convex problems, where K is the total number of gradient
computations across all local compute nodes. For our scheme, we prove a
\textit{tight} and novel non-trivial convergence analysis for strongly convex
problems for {\em heterogeneous} data which does not use the bounded gradient
assumption as seen in many existing publications. The tightness is a
consequence of our proofs for lower and upper bounds of the convergence rate,
which show a constant factor difference. We show experimental results for plain
convex and non-convex problems for biased (i.e., heterogeneous) and unbiased
local data sets.Comment: arXiv admin note: substantial text overlap with arXiv:2007.09208
AISTATS 202