CORE
🇺🇦Â
 make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Riemannian Langevin Algorithm for Solving Semidefinite Programs
Authors
Murat A. Erdogdu
Mufan Bill Li
Publication date
22 December 2020
Publisher
View
on
arXiv
Abstract
We propose a Langevin diffusion-based algorithm for non-convex optimization and sampling on a product manifold of spheres. Under a logarithmic Sobolev inequality, we establish a guarantee for finite iteration convergence to the Gibbs distribution in terms of Kullback--Leibler divergence. We show that with an appropriate temperature choice, the suboptimality gap to the global minimum is guaranteed to be arbitrarily small with high probability. As an application, we consider the Burer--Monteiro approach for solving a semidefinite program (SDP) with diagonal constraints, and analyze the proposed Langevin algorithm for optimizing the non-convex objective. In particular, we establish a logarithmic Sobolev inequality for the Burer--Monteiro problem when there are no spurious local minima, but under the presence saddle points. Combining the results, we then provide a global optimality guarantee for the SDP and the Max-Cut problem. More precisely, we show that the Langevin algorithm achieves
ϵ
\epsilon
ϵ
accuracy with high probability in
Ω
~
(
ϵ
−
5
)
\widetilde{\Omega}( \epsilon^{-5} )
Ω
(
ϵ
−
5
)
iterations
Similar works
Full text
Available Versions
arXiv.org e-Print Archive
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:arXiv.org:2010.11176
Last time updated on 30/10/2020