We present numerical simulation results of driven vortex lattices in presence
of random disorder at zero temperature. We show that the plastic dynamics is
readily understood in the framework of chaos theory. Intermittency "routes to
chaos" have been clearly identified, and positive Lyapunov exponents and
broad-band noise, both characteristic of chaos, are found to coincide with the
differential resistance peak. Furthermore, the fractal dimension of the strange
attractor reveals that the chaotic dynamics of vortices is low-dimensional.Comment: 5 pages, 3 figures Accepted for publication in Physical Review
Letter