A mixture of spin-polarized light and heavy fermionic atoms on a finite size
2D optical lattice is considered at various temperatures and values of the
coupling between the two atomic species. In the case, where the heavy atoms are
immobile in comparison to the light atoms, this system can be seen as a
correlated binary alloy related to the Falicov-Kimball model. The heavy atoms
represent a scattering environment for the light atoms. The distributions of
the binary alloy are discussed in terms of strong- and weak-coupling
expansions. We further present numerical results for the intermediate
interaction regime and for the density of states of the light particles. The
numerical approach is based on a combination of a Monte-Carlo simulation and an
exact diagonalization method. We find that the scattering by the correlated
heavy atoms can open a gap in the spectrum of the light atoms, either for
strong interaction or small temperatures.Comment: 15 pages, 8 figure