research

The band structure and Fermi surface of La0.6_{0.6}Sr0.4_{0.4}MnO3_{3} thin films studied by in-situ angle-resolved photoemission spectroscopy

Abstract

We have performed an in situ angle-resolved photoemission spectroscopy (ARPES) on single-crystal surfaces of La0.6_{0.6}Sr0.4_{0.4}MnO3_{3} (LSMO) thin films grown on SrTiO3_{3} (001) substrates by laser molecular beam epitaxy, and investigated the electronic structure near the Fermi level (EFE_{F}). The experimental results were compared with the band-structure calculation based on LDA + UU. The band structure of LSMO thin films consists of several highly dispersive O 2pp derived bands in the binding energy range of 2.0 - 6.0 eV and Mn 3dd derived bands near EFE_{F}. ARPES spectra around the GammaGamma point show a dispersive band near EFE_{F} indicative of an electron pocket centered at the GammaGamma point, although it was not so clearly resolved as an electronlike pocket due to the suppression of spectral weight in the vicinity of EFE_{F}. Compared with the band-structure calculation, the observed conduction band is assigned to the Mn 3degde_{g} majority-spin band responsible for the half-metallic nature of LSMO. We have found that the estimated size of the Fermi surface is consistent with the prediction of the band-structure calculation, while the band width becomes significantly narrower than the calculation. Also, the intensity near EFE_{F} is strongly reduced. The origin of these discrepancies between the experiment and the calculation is discussed.Comment: 7 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019