Abstract

The phase diagram of the d=3 Hubbard model is calculated as a function of temperature and electron density n_i, in the full range of densities between 0 and 2 electrons per site, using renormalization-group theory. An antiferromagnetic phase occurs at lower temperatures, at and near the half-filling density of = 1. The antiferromagnetic phase is unstable to hole or electron doping of at most 15%, yielding to two distinct "tau" phases: for large coupling U/t, one such phase occurs between 30-35% hole or electron doping, and for small to intermediate coupling U/t another such phase occurs between 10-18% doping. Both tau phases are distinguished by non-zero hole or electron hopping expectation values at all length scales. Under further doping, the tau phases yield to hole- or electron-rich disordered phases. We have calculated the specific heat over the entire phase diagram. The low-temperature specific heat of the weak-coupling tau phase shows a BCS-type exponential decay, indicating a gap in the excitation spectrum, and a cusp singularity at the phase boundary. The strong-coupling tau phase, on the other hand, has characteristics of BEC-type superconductivity, including a critical exponent alpha approximately equal to -1, and an additional peak in the specific heat above the transition temperature indicating pair formation. In the limit of large Coulomb repulsion, the phase diagram of the tJ model is recovered.Comment: 16 pages, 10 figures; typos in Fig. 2 correcte

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019
    Last time updated on 06/07/2012