A neutrosophic set is a part of neutrosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. The neutrosophic set is a powerful general formal framework that has been recently proposed. However, the neutrosophic set needs to be specified from a technical point of view. Here, we define the set-theoretic operators on an instance of a neutrosophic set, and call it an Interval Neutrosophic Set (INS). We prove various properties of INS, which are connected to operations and relations over INS. We also introduce a new logic system based on interval neutrosophic sets. We study the interval neutrosophic propositional calculus and interval neutrosophic predicate calculus. We also create a neutrosophic logic inference system based on interval neutrosophic logic. Under the framework of the interval neutrosophic set, we propose a data model based on the special case of the interval neutrosophic sets called Neutrosophic Data Model. This data model is the extension of fuzzy data model and paraconsistent data model. We generalize the set-theoretic operators and relation-theoretic operators of fuzzy relations and paraconsistent relations to neutrosophic relations. We propose the generalized SQL query constructs and tuple-relational calculus for Neutrosophic Data Model. We also design an architecture of Semantic Web Services agent based on the interval neutrosophic logic and do the simulation study