The hippocampal formation from a machine learning perspective

Abstract

Nos dias de hoje, existem diversos tipos de sensores que conseguem captar uma grande quantidade de dados em curtos espaços de tempo. Em muitas situações, as informações obtidas pelos diferentes sensores traduzem fenómenos específicos, através de dados obtidos em diferentes formatos. Nesses casos, torna-se difícil saber quais as relações entre os dados e/ou identificar se os diferentes dados traduzem uma certa condição. Neste contexto, torna-se relevante desenvolver sistemas que tenham capacidade de analisar grandes quantidades de dados num menor tempo possível, produzindo informação válida a partir da informação recolhida. O cérebro dos animais é um órgão biológico capaz de fazer algo semelhante com a informação obtida pelos sentidos, que traduzem fenómenos específicos. Dentro do cérebro, existe um elemento chamado Hipocampo, que se encontra situado na área do lóbulo temporal. A sua função principal consiste em analisar os elementos previamente codificados pelo Entorhinal Cortex, dando origem à formação de novas memórias. Sendo o Hipocampo um órgão que foi sofrendo evoluções ao longo do tempos, é importante perceber qual é o seu funcionamento e, se possível, tentar encontrar modelos computacionais que traduzam o seu mecanismo. Desde a remoção do Hipocampo num paciente que sofria de convulsões, ficou claro que, sem esse elemento, não seria possível memorizar lugares ou eventos ocorridos num determinado espaço de tempo. Essa funcionalidade é obtida através de um conjunto específico de células chamadas de Grid Cells, que estão situadas na área do Entorhinal Cortex, mas também das Place Cells, Head Direction Cells e Boundary Vector Cells. Neste âmbito, o principal objetivo desta Dissertação consiste em descrever os principais mecanismos biológicos localizados no Hipocampo e definir modelos computacionais que consigam simular as funções mais críticas de ambos os Hipocampos e da área do Entorhinal Cortex.Nowadays, sensor devices are able to generate huge amounts of data in short periods of time. In many situations, that data, collected by many different sensors, translates a specific phenomenon, but is presented in very different types and formats. In these cases, it is hard to determine how these distinct types of data are related to each other or translate a certain condition. In this context, it would be of great importance to develop a system capable of analysing such data in the smallest amount time to produce valid information. The brain is a biological organ capable of such decisions. Inside the brain, there is an element called Hippocampus, that is situated in the Temporal Lobe area. Its main function is to analyse the sensorial data encoded by the Entorhinal Cortex to create new memories. Since the Hippocampus has evolved for thousands of years to perform these tasks, it is of high importance to try to understand its functioning and to model it, i.e. to define a set of computer algorithms that approximates it. Since the removal of the Hippocampus from a patient suffering from seizures, the scientific community believes that the Hippocampus is crucial for memory formation and for spatial navigation. Without it, it wouldn’t be possible to memorize places and events that happened in a specific time or place. Such functionality is achieved with the help of set of cells called Grid Cells, present in the Entorhinal Cortex area, but also with Place Cells, Head Direction Cells and Boundary Vector Cells. The combined information analysed by those cells allows the unique identification of places or events. The main objective of the work developed in this Thesis consists in describing the biological mechanisms present in the Hippocampus area and to define potential computer models that allow the simulation of all or the most critical functions of both the Hippocampus and the Entorhinal Cortex areas

    Similar works