The thermodynamics and structural properties of the hexahydride alanates
(M2M'AlH6) with the elpasolite structure have been investigated. A series of
mixed alkali alanates (Na2LiAlH6, K2LiAlH6 and K2NaAlH6) were synthesized and
found to reversibly absorb and desorb hydrogen without the need for a catalyst.
Pressure-composition isotherms were measured to investigate the thermodynamics
of the absorption and desorption reactions with hydrogen. Isotherms for
catalyzed (4 mol% TiCl3) and uncatalyzed Na2LiAlH6 exhibited an increase in
kinetics, but no change in the bulk thermodynamics with the addition of a
dopant. A structural analysis using synchrotron x-ray diffraction showed that
these compounds favor the Fm-3m space group with the smaller ion (M') occupying
an octahedral site. These results demonstrate that appropriate cation
substitutions can be used to stabilize or destabilize the material and may
provide an avenue to improving the unfavorable thermodynamics of a number of
materials with promising gravimetric hydrogen densities.Comment: 6 pages, 7 figures,3 tables, submitted to PR