We investigate the mass enhancement factor and the superconducting transition
temperature in the d-p model for the high-\Tc cuprates. We solve the
\'Eliashberg equation using the third-order perturbation theory with respect to
the on-site Coulomb repulsion U. We find that when the energy difference
between d-level and p-level is large, the mass enhancement factor becomes large
and \Tc tends to be suppressed owing to the difference of the density of
state for d-electron at the Fermi level. From another view point, when the
energy difference is large, the d-hole number approaches to unity and the
electron correlation becomes strong and enhances the effective mass. This
behavior for the electron number is the same as that of the f-electron number
in the heavy fermion systems. The mass enhancement factor plays an essential
role in understanding the difference of \Tc between the LSCO and YBCO
systems.Comment: 4pages, 9figures, to be published in J. Phys. Soc. Jp