research

Damping effects and the metal-insulator transition in the two-dimensional electron gas

Abstract

The damping of single-particle degrees of freedom in strongly correlated two-dimensional Fermi systems is analyzed. Suppression of the scattering amplitude due to the damping effects is shown to play a key role in preserving the validity of the Landau-Migdal quasiparticle picture in a region of a phase transition, associated with the divergence of the quasiparticle effective mass. The results of the analysis are applied to elucidate the behavior of the conductivity σ(T)\sigma(T) of the two-dimensional dilute electron gas in the density region where it undergoes a metal-insulator transition.Comment: 7 pages, 6 figures. Improved and slightly extended version: new paragraph about Hall effect + new Fig.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019