Abstract

Granulation is a process whereby a dense colloidal suspension is converted into pasty granules (surrounded by air) by application of shear. Central to the stability of the granules is the capillary force arising from the interfacial tension between solvent and air. This force appears capable of maintaining a solvent granule in a jammed solid state, under conditions where the same amount of solvent and colloid could also exist as a flowable droplet. We argue that in the early stages of granulation the physics of dilatancy, which requires that a powder expand on shearing, is converted by capillary forces into the physics of arrest. Using a schematic model of colloidal arrest under stress, we speculate upon various jamming and granulation scenarios. Some preliminary experimental results on aspects of granulation in hard-sphere colloidal suspensions are also reported.Comment: Original article intended for J Phys Cond Mat special issue on Granular Materials (M Nicodemi, Ed.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 11/12/2019