We study the persistence properties in a simple model of two coupled
interfaces characterized by heights h_1 and h_2 respectively, each growing over
a d-dimensional substrate. The first interface evolves independently of the
second and can correspond to any generic growing interface, e.g., of the
Edwards-Wilkinson or of the Kardar-Parisi-Zhang variety. The evolution of h_2,
however, is coupled to h_1 via a quenched random velocity field. In the limit
d\to 0, our model reduces to the Matheron-de Marsily model in two dimensions.
For d=1, our model describes a Rouse polymer chain in two dimensions advected
by a transverse velocity field. We show analytically that after a long waiting
time t_0\to \infty, the stochastic process h_2, at a fixed point in space but
as a function of time, becomes a fractional Brownian motion with a Hurst
exponent, H_2=1-\beta_1/2, where \beta_1 is the growth exponent characterizing
the first interface. The associated persistence exponent is shown to be
\theta_s^2=1-H_2=\beta_1/2. These analytical results are verified by numerical
simulations.Comment: 15 pages, 3 .eps figures include