research

Effective capillary interaction of spherical particles at fluid interfaces

Abstract

We present a detailed analysis of the effective force between two smooth spherical colloids floating at a fluid interface due to deformations of the interface. The results hold in general and are applicable independently of the source of the deformation provided the capillary deformations are small so that a superposition approximation for the deformations is valid. We conclude that an effective long--ranged attraction is possible if the net force on the system does not vanish. Otherwise, the interaction is short--ranged and cannot be computed reliably based on the superposition approximation. As an application, we consider the case of like--charged, smooth nanoparticles and electrostatically induced capillary deformation. The resulting long--ranged capillary attraction can be easily tuned by a relatively small external electrostatic field, but it cannot explain recent experimental observations of attraction if these experimental systems were indeed isolated.Comment: 23 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019