The Mott-Hubbard metal-insulator transition is investigated in a two-band
Hubbard model within dynamical mean-field theory. To this end, we use a
suitable extension of Wilson's numerical renormalization group for the solution
of the effective two-band single-impurity Anderson model. This method is
non-perturbative and, in particular, allows to take into account the full
exchange part of the Hund's rule coupling between the two orbitals. We discuss
in detail the influence of the various Coulomb interactions on thermodynamic
and dynamic properties, for both the impurity and the lattice model. The
exchange part of the Hund's rule coupling turns out to play an important role
for the physics of the two-band Hubbard model and for the nature of the
Mott-transition