Abstract

We study the random m-ary search tree model (where m stands for the number of branches of a search tree), an important problem for data storage in computer science, using a variety of statistical physics techniques that allow us to obtain exact asymptotic results. In particular, we show that the probability distributions of extreme observables associated with a random search tree such as the height and the balanced height of a tree have a traveling front structure. In addition, the variance of the number of nodes needed to store a data string of a given size N is shown to undergo a striking phase transition at a critical value of the branching ratio m_c=26. We identify the mechanism of this phase transition, show that it is generic and occurs in various other problems as well. New results are obtained when each element of the data string is a D-dimensional vector. We show that this problem also has a phase transition at a critical dimension, D_c= \pi/\sin^{-1}(1/\sqrt{8})=8.69363...Comment: 11 pages, 8 .eps figures included. Invited contribution to STATPHYS-22 held at Bangalore (India) in July 2004. To appear in the proceedings of STATPHYS-2

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020