Measurements of specific heat and electrical resistivity in magnetic fields
up to 9 T along [001] and temperatures down to 50 mK of Sn-substituted CeCoIn5
are reported. The maximal -ln(T) divergence of the specific heat at the upper
critical field H_{c2} down to the lowest temperature characteristic of
non-Fermi liquid systems at the quantum critical point (QCP), the universal
scaling of the Sommerfeld coefficient, and agreement of the data with
spin-fluctuation theory, provide strong evidence for quantum criticality at
H_{c2} for all x < 0.12 in CeCoIn5-xSnx. These results indicate the
"accidental" coincidence of the QCP located near H_{c2} in pure CeCoIn5, in
actuality, constitute a novel quantum critical point associated with
unconventional superconductivity.Comment: 12 pages, 4 figure