thesis

Metodologia de monitorização do envelhecimento para aplicações de auto-teste embutido

Abstract

Dissertação de mestrado, Engenharia Eléctrica e Electrónica, Instituto Superior de Engenharia, Universidade do Algarve, 2013The high integration level achieved as well as complexity and performance enhancements in new nanometer technologies make IC (Integrated Circuits) products very difficult to test. Moreover, long term operation brings aging cumulative degradations, due to new processes and materials that lead to emerging defect phenomena and the consequence are products with increased variability in their behaviour, more susceptible to delay-faults and with a reduced expected lifecycle. The main objectives of this thesis are twofold, as explained in the following. First, a new software tool is presented to generate HDL (Hardware Description Language) for BIST (Built-In Self-Test) structures, aiming delay-faults, and inserted the new auto-test functionality in generic sequential CMOS circuits. The BIST methodology used implements a scan based BIST approach, using a new BIST controller to implement the Launch-On-Shift (LOS) and Launch-On-Capture (LOC) delay-fault techniques. Second, it will be shown that multi-VDD tests in circuits with BIST infra-structures can be used to detect gross delay-faults during on-field operations, and consequently can be used as an aging sensor methodology during circuits’ lifecycle. The discrete set of multi-VDD BIST sessions generates a Voltage Signature Collection (VSC) and the presence of a delay-fault (or a physical defect) modifies the VSC collection, allowing the aging sensor capability. The proposed Design for Testability (DFT) method and tool are demonstrated with extensive SPICE simulation using three ITC’99 benchmark circuits.O elevado nível de integração atingida, complexidade, assim como performances melhoradas em novas tecnologias nanométricas tornam os produtos em circuitos integrados tecnológicos muito difíceis de testar. Para além disso, a operação a longo prazo produz degradações cumulativas pelo envelhecimento dos circuitos, devido a novos processos e materiais que conduzem a novos defeitos e a consequência são produtos com maior variabilidade no seu funcionamento, mais susceptíveis às faltas de atraso e com um tempo de vida menor. Os principais objectivos desta tese são dois, como explicado em seguida. Primeiro, é apresentada uma nova ferramenta de software para gerar estruturas de auto-teste integrado (BIST, Built-In Self-Test) descritas em linguagens de descrição de hardware (HDL, Hardware Description Language), com o objectivo de detectar faltas de atraso, e inserir a nova funcionalidade de auto-teste em circuitos genéricos sequenciais CMOS. A metodologia de BIST utilizada implementa um procedimento baseado em caminhos de deslocamento, utilizando um novo controlador de BIST para implementar técnicas de faltas de atraso, como Launch-On-Shift (LOS) e Launch-On-Capture (LOC). Segundo, irá ser mostrado que testes multi-VDD em circuitos com infra-estruturas de BIST podem ser usados para detectar faltas de atraso grosseiras durante a operação no terreno e, consequentemente, pode ser usado como uma metodologia de sensor de envelhecimento durante o tempo de vida dos circuitos. Um número discreto de sessões BIST multi-VDD geram uma Colecção de Assinaturas de Tensão (Voltage Signature Collection, VSC) e a presença de uma falta de atraso (ou um defeito físico) faz modificar a colecção VSC, comportando-se como sensor de envelhecimento. O trabalho foi iniciado com o estudo do estado da arte nesta área. Assim, foram estudadas e apresentadas no capítulo 2 as principais técnicas de DfT (Design for Testability) disponíveis e utilizadas pela indústria, nomeadamente, as técnicas de SP (Scan Path), de BIST e as técnicas de scan para delay-faults, LOS e LOC. No capítulo 3, ainda referente ao estudo sobre o estado da arte, é apresentado o estudo sobre os fenómenos que provocam o envelhecimento dos circuitos digitais, nomeadamente o NBTI (Negative Bias Temperature Instability), que é considerado o factor mais relevante no envelhecimento de circuitos integrados (especialmente em nanotecnologias). Em seguida, iniciou-se o desenvolvimento do primeiro objectivo. Relativamente a este assunto, começou-se por definir qual o comportamento das estruturas de BIST e como se iriam interligar. O comportamento foi descrito, bloco a bloco, em VHDL comportamental, ao nível RTL (Register Transfer Level). Esta descrição foi então validada por simulação, utilizando a ferramenta ModelSim. Posteriormente, esta descrição comportamental foi sintetizada através da ferramenta Synopsys, com a colaboração do INESC-ID em Lisboa (instituição parceira nestes trabalhos de investigação), e foi obtida uma netlist ao nível de porta lógica, que foi guardada utilizando a linguagem de descrição de hardware Verilog. Assim, obtiveram-se dois tipos de descrição dos circuitos BIST: uma comportamental, em VHDL, e outra estrutural, em Verilog (esta descrição estrutural em Verilog irá permitir, posteriormente, fazer a simulação e análise de envelhecimento). A nova estrutura de BIST obtida é baseada no modelo clássico de BIST, mas apresenta algumas alterações, nomeadamente ao nível da geração de vectores de teste e no controlo e aplicação desses vectores ao circuito. Estas modificações têm como objectivo aumentar a detecção de faltas e permitir o teste de faltas de atraso. É composto por três blocos denominados LFSRs (Linear Feedback Shift Registers), um utilizado para gerar os vectores pseudo-aleatórios para as entradas primárias do circuito, outro para gerar os vectores para a entrada do scan path, e o último utilizado como contador para controlar o número de bits introduzidos no scan path. Relativamente ao controlador, este foi especificamente desenhado para controlar um teste com estratégia de test-per-scan (ou seja, um teste baseado no caminho de varrimento existente no circuito) e tem uma codificação de estados que permite implementar as estratégias de teste de faltas de atraso, Launch-On-Shift (LOS) e Launch-On-Capture (LOC). Na secção de saída do novo modelo de BIST, o processo de compactação usa o mesmo princípio do modelo tradicional, utilizando neste caso um MISR (Multiple Input Signature Register). Ainda relativamente ao primeiro objectivo, seguiu-se o desenvolvimento da ferramenta BISTGen, para automatizar a geração das estruturas de BIST atrás mencionadas, nos dois tipos de descrição, e automaticamente inserir estas estruturas num circuito de teste (CUT, Circuit Under Test). A aplicação de software deve permitir o manuseamento de dois tipos de informação relativa ao circuito: descrição do circuito pelo seu comportamento, em VHDL, e descrição do circuito pela sua estrutura, em Verilog. Deve ter como saída a descrição de hardware supra citada, inserindo todos os blocos integrantes da estrutura num só ficheiro, contendo apenas um dos tipos de linguagem (Verilog ou VHDL), escolhida previamente pelo utilizador. No caso dos LFSRs e do MISR, o programa deve permitir ao utilizador a escolha de LFSRs do tipo linear ou do tipo modular (também conhecidos por fibonacci ou galois), e deve também possuir suporte para automaticamente seleccionar de uma base de dados quais as realimentações necessárias que conduzem à definição do polinómio primitivo para o LFSR. Será necessário ainda criar uma estrutura em base de dados para gerir os nomes e o número de entradas e saídas do circuito submetido a teste, a que chamamos CUT, de forma a simplificar o processo de renomeação que o utilizador poderá ter de efectuar. Dar a conhecer ao programa os nomes das entradas e saídas do CUT é de relevante importância, uma vez que a atribuição de nomes para as entradas e saídas pode vir em qualquer língua ou dialecto, não coincidindo com os nomes padrão normalmente atribuídos. Relativamente às duas linguagens que o programa recebe através do CUT na sua entrada, no caso VHDL após inserir BIST o ficheiro final terá sempre uma estrutura semelhante, qualquer que seja o ficheiro a ser tratado, variando apenas com o hardware apresentado pelo CUT. No entanto, para o caso Verilog a situação será diferente, uma vez que o programa tem de permitir que o ficheiro final gerado possa surgir de duas formas dependendo da escolha desejada. A primeira forma que o software deve permitir para o caso Verilog é gerar um ficheiro contendo módulos, de uma forma semelhante ao que acontece no caso VHDL. No entanto, deve permitir também a obtenção, caso o utilizador solicite, de um ficheiro unificado, sem sub-módulos nos blocos, para que o ficheiro final contenha apenas uma única estrutura, facilitando a sua simulação e análise de envelhecimento nas etapas seguintes. Relativamente ao segundo objectivo, com base no trabalho anterior já efectuado em metodologias para detectar faltas de delay em circuitos com BIST, foi definida uma metodologia de teste para, durante a vida útil dos circuitos, permitir avaliar como vão envelhecendo, tratando-se assim de uma metodologia de monitorização de envelhecimento para circuitos com BIST. Um aspecto fundamental para a realização deste segundo objectivo é podermos prever como o circuito vai envelhecer. Para realizar esta tarefa, sempre subjectiva, utilizou-se uma ferramenta desenvolvida no ISE-UAlg em outra tese de mestrado anterior a esta, a ferramenta AgingCalc. Esta ferramenta inicia-se com a definição, por parte do utilizador, das probabilidades de operação das entradas primárias do circuito (probabilidades de cada entrada estar a ‘0’ ou a ‘1’). De notar que este é o processo subjectivo existente na análise de envelhecimento, já que é impossível prever como um circuito irá ser utilizado. Com base nestas probabilidades de operação, o programa utiliza a estrutura do circuito para calcular, numa primeira instância, as probabilidades dos nós do circuito estarem a ‘0’ ou a ‘1’, e numa segunda instância as probabilidades de cada transístor PMOS estar ligado e com o seu canal em stress (com uma tensão negativa aplicada à tensão VGS e um campo eléctrico aplicado ao dieléctrico da porta). Utilizando fórmulas definidas na literatura para modelação do parâmetro Vth (tensão limiar de condução) do transístor de acordo com um envelhecimento produzido pelo efeito NBTI (Negative Bias Temperature Instability), o programa calcula, para cada ano ou tempo de envelhecimento a considerar, as variações ocorridas no Vth de cada transístor PMOS, com base nas probabilidades e condições de operação previamente definidas, obtendo um novo Vth para cada transístor (os valores prováveis para os transístores envelhecidos). Em seguida, o programa instancia o simulador HSPICE para simular as portas lógicas do circuito, utilizando uma descrição que contém os Vth calculados. Esta simulação permite calcular os atrasos em cada porta para cada ano de envelhecimento considerado, podendo em seguida calcular e obter a previsão para o envelhecimento de cada caminho combinatório do circuito. É de notar que, embora a previsão de envelhecimento seja subjectiva, pois depende de uma previsão de operação, é possível definir diferentes probabilidades de operação de forma a estabelecer limites prováveis para o envelhecimento de cada caminho. Tendo uma ferramenta que permite prever como o circuito irá envelhecer, é possível utilizá-la para modificar a estrutura do circuito e introduzir faltas de delay produzidas pelo envelhecimento por NBTI ao longo dos anos de operação (modelados pelo Vth dos transístores PMOS). Assim, no capítulo 5 irá ser mostrado que testes multi-VDD em circuitos com infra-estruturas de BIST podem ser usados para detectar faltas de atraso grosseiras durante a operação no terreno, podendo em alguns casos identificar variações provocadas pelo envelhecimento em caminhos curtos, e consequentemente, estes testes podem ser usados como uma metodologia de sensor de envelhecimento durante o tempo de vida dos circuitos. Um número discreto de sessões BIST multi-VDD geram uma Colecção de Assinaturas de Tensão (Voltage Signature Collection, VSC) e a presença de uma falta de atraso (ou um defeito físico) faz modificar a colecção VSC, comportando-se como sensor de envelhecimento. O objectivo será, especificando, fazer variar a tensão de alimentação, baixando o seu valor dentro de um determinado intervalo e submetendo o circuito a sucessivas sessões de BIST para cada valor de tensão, até que o circuito retorne uma assinatura diferente da esperada. Este procedimento de simulação será feito para uma maturidade de até 20 anos, podendo o incremento não ser unitário. Na realidade os circuitos nos primeiros anos de vida em termos estatísticos não sofrem envelhecimento a ponto de causar falhas por esse efeito. As falhas que podem acelerar o processo de envelhecimento estão relacionadas com defeitos significativos no processo de fabrico mas que ainda assim não são suficientes para no início do seu ciclo de vida fazer o circuito falhar, tornando-se efectivas após algum tempo de utilização. Os métodos e ferramentas propostos de DfT são demonstrados com extensas simulações VHDL e SPICE, utilizando circuitos de referência

    Similar works