We present a theoretical treatment of Bragg spectroscopy of an accelerating
condensate in a solitary-wave state. Our treatment is based on the
Gross-Pitaevskii equation with an optical potential representing the Bragg
pulse and an additional external time-dependent potential generating the
solitary-wave behaviour. By transforming to a frame translating with the
condensate, we derive an approximate set of equations that can be readily
solved to generate approximate Bragg spectra. Our analytic method is accurate
within a well defined parameter regime and provides physical insight into the
structure of the spectra. We illustrate our formalism using the example of
Bragg spectroscopy of a condensate in a time-averaged orbiting potential trap.Comment: 9 pages, 3 figure