We examine the effects of electron-electron interactions on transport between
edge states in a multilayer integer quantum Hall system. The edge states of
such a system, coupled by interlayer tunneling, form a two-dimensional, chiral
metal at the sample surface. We calculate the temperature-dependent
conductivity and the amplitude of conductance fluctuations in this chiral
metal, treating Coulomb interactions and disorder exactly in the weak-tunneling
limit. We find that the conductivity increases with increasing temperature, as
observed in recent experiments, and we show that the correlation length
characterising conductance fluctuations varies inversely with temperature.Comment: 4 pages, 2 figures, typos corrected, Ref. 17 added, minor changes
made for publicatio