The effect of geometrical frustration in a two-dimensional 1/4-filled
strongly correlated electron system is studied theoretically, motivated by
layered organic molecular crystals. An extended Hubbard model on the square
lattice is considered, with competing nearest neighbor Coulomb interaction, V,
and that of next-nearest neighbor along one of the diagonals, V', which favor
different charge ordered states. Based on exact diagonalization calculations,
we find a metallic phase stabilized over a broad window at V' ~ V even for
large Coulomb repulsion strengths as a result of frustrating the charge ordered
states. Slightly modifying the lattice geometry relevant to the actual organic
compounds does not alter the results, suggesting that this `quantum melting' of
charge order is a robust feature of frustrated strongly correlated 1/4-filled
systems.Comment: 5 pages, 4 figures, to be published in Phys. Rev.