research

Quantum Melting of Charge Order due to Frustration in Two-Dimensional Quarter-Filled Systems

Abstract

The effect of geometrical frustration in a two-dimensional 1/4-filled strongly correlated electron system is studied theoretically, motivated by layered organic molecular crystals. An extended Hubbard model on the square lattice is considered, with competing nearest neighbor Coulomb interaction, V, and that of next-nearest neighbor along one of the diagonals, V', which favor different charge ordered states. Based on exact diagonalization calculations, we find a metallic phase stabilized over a broad window at V' ~ V even for large Coulomb repulsion strengths as a result of frustrating the charge ordered states. Slightly modifying the lattice geometry relevant to the actual organic compounds does not alter the results, suggesting that this `quantum melting' of charge order is a robust feature of frustrated strongly correlated 1/4-filled systems.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020
    Last time updated on 27/12/2021