research

Non-universal Critical Quantities from Variational Perturbation Theory and Their Application to the BEC Temperature Shift

Abstract

For an O(N) symmetric scalar field theory with Euclidean action integral d^3x [1/2 |nabla phi|^2 + 1/2 r phi^2 + 1/4! u phi^4], where phi = (phi_1,...,phi_N) is a vector of N real field components, variational perturbation theory through seven loops is employed for N = 0,1,2,3,4 to compute the renormalized value of r/(N+2)u^2 at the phase transition. Its exact large-N limit is determined as well. We also extend an earlier computation of the interaction-induced shift Delta/Nu for N = 1,2,4 to N = 0,3. For N = 2, the results for the two quantities are used to compute the second-order shift of the condensation temperature of a dilute Bose gas, both in the homogenous case and for the wide limit of a harmonic trap. Our results are in agreement with earlier Monte Carlo simulations for N = 1,2,4. The appendix contains previously unpublished numerical seven-loop data provided to us by B.Nickel.Comment: 19 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020