For an O(N) symmetric scalar field theory with Euclidean action integral d^3x
[1/2 |nabla phi|^2 + 1/2 r phi^2 + 1/4! u phi^4], where phi = (phi_1,...,phi_N)
is a vector of N real field components, variational perturbation theory through
seven loops is employed for N = 0,1,2,3,4 to compute the renormalized value of
r/(N+2)u^2 at the phase transition. Its exact large-N limit is determined as
well. We also extend an earlier computation of the interaction-induced shift
Delta/Nu for N = 1,2,4 to N = 0,3. For N = 2, the results for the two
quantities are used to compute the second-order shift of the condensation
temperature of a dilute Bose gas, both in the homogenous case and for the wide
limit of a harmonic trap. Our results are in agreement with earlier Monte Carlo
simulations for N = 1,2,4. The appendix contains previously unpublished
numerical seven-loop data provided to us by B.Nickel.Comment: 19 page