research

Tunable Exchange Interaction in Quantum Dot Devices

Abstract

We theoretically discuss the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between semiconductor quantum dots (QDs). When each QD having a local spin is coupled to the conduction electrons in semiconductors, an indirect exchange interaction, i.e., the RKKY interaction, is induced between two local spins. The RKKY interaction between QDs, which is mediated by the Fermi sea in semiconductors, is modulated by changing the Fermi energy, and the magnitude or even the sign of the exchange interaction can be tuned, which leads to a tunable magnetic transition in QD devices. We estimate the magnitude of the RKKY interaction in QDs as a function of the electron density and the inter-dot distance

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019