research

Superconductor-insulator transition driven by local dephasing

Abstract

We consider a system where localized bound electron pairs form an array of "Andreev"-like scattering centers and are coupled to a fermionic subsystem of uncorrelated electrons. By means of a path-integral approach, which describes the bound electron pairs within a coherent pseudospin representation, we derive and analyze the effective action for the collective phase modes which arise from the coupling between the two subsystems once the fermionic degrees of freedom are integrated out. This effective action has features of a quantum phase model in the presence of a Berry phase term and exhibits a coupling to a field which describes at the same time the fluctuations of density of the bound pairs and those of the amplitude of the fermion pairs. Due to the competition between the local and the hopping induced non-local phase dynamics it is possible, by tuning the exchange coupling or the density of the bound pairs, to trigger a transition from a phase ordered superconducting to a phase disordered insulating state. We discuss the different mechanisms which control this occurrence and the eventual destruction of phase coherence both in the weak and strong coupling limit.Comment: 16 pages, 5 figures, submitted to PRB (05-Feb04

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 18/02/2019