research

Cyclic exchange, isolated states and spinon deconfinement in an XXZ Heisenberg model on the checkerboard lattice

Abstract

The antiferromagnetic Ising model on a checkerboard lattice has an ice-like ground state manifold with extensive degeneracy. and, to leading order in J_xy, deconfined spinon excitations. We explore the role of cyclic exchange arising at order J^2_xy/J_z on the ice states and their associated spinon excitations. By mapping the original problem onto an equivalent quantum six--vertex model, we identify three different phases as a function of the chemical potential for flippable plaquettes - a phase with long range Neel order and confined spinon excitations, a non-magnetic state of resonating square plaquettes, and a quasi-collinear phase with gapped but deconfined spinon excitations. The relevance of the results to the square--lattice quantum dimer model is also discussed.Comment: 4 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020