In many applications to biophysics and environmental engineering,
sedimentation of non-spherical particles for example: ellipsoids, is an
important problem. In our work, we simulate the dynamics of oblate ellipsoids
under gravity. We study the settling velocity and the average orientation of
the ellipsoids as a function of volume fraction. We see that the settling
velocity shows a local maximum at the intermmediate densities unlike the
spheres. The average orientation of the ellipsoids also shows a similar local
maximum and we observe that this local maximum disappears as the Reynolds
number is increased. Also, at small volume fractions, we observe that the
oblate ellipsoids exhibit an orientational clustering effect in alignment with
gravity accompanied by strong density fluctuations. The vertical and horizontal
fluctuations of the oblate ellipsoids are small compared to that of the
spheres