research

Information Geometry and Phase Transitions

Abstract

The introduction of a metric onto the space of parameters in models in Statistical Mechanics and beyond gives an alternative perspective on their phase structure. In such a geometrization, the scalar curvature, R, plays a central role. A non-interacting model has a flat geometry (R=0), while R diverges at the critical point of an interacting one. Here, the information geometry is studied for a number of solvable statistical-mechanical models.Comment: 6 pages with 1 figur

    Similar works