We study the motion of oil drops propelled by actin polymerization in cell
extracts. Drops deform and acquire a pear-like shape under the action of the
elastic stresses exerted by the actin comet. We solve this free boundary
problem and calculate the drop shape taking into account the elasticity of the
actin gel and the variation of the polymerization velocity with normal stress.
The pressure balance on the liquid drop imposes a zero propulsive force if
gradients in surface tension or internal pressure are not taken into account.
Quantitative parameters of actin polymerization are obtained by fitting theory
to experiment.Comment: 5 pages, 4 figure