research

Ising transition in the two-dimensional quantum J1J2J_1-J_2 Heisenberg model

Abstract

We study the thermodynamics of the spin-SS two-dimensional quantum Heisenberg antiferromagnet on the square lattice with nearest (J1J_1) and next-nearest (J2J_2) neighbor couplings in its collinear phase (J2/J1>0.5J_2/J_1>0.5), using the pure-quantum self-consistent harmonic approximation. Our results show the persistence of a finite-temperature Ising phase transition for every value of the spin, provided that the ratio J2/J1J_2/J_1 is greater than a critical value corresponding to the onset of collinear long-range order at zero temperature. We also calculate the spin- and temperature-dependence of the collinear susceptibility and correlation length, and we discuss our results in light of the experiments on Li2_2VOSiO4_4 and related compounds.Comment: 4 page, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020