We present a plane-wave ultrasoft pseudopotential implementation of
first-principle molecular dynamics, which is well suited to model large
molecular systems containing transition metal centers. We describe an efficient
strategy for parallelization that includes special features to deal with the
augmented charge in the contest of Vanderbilt's ultrasoft pseudopotentials. We
also discuss a simple approach to model molecular systems with a net charge
and/or large dipole/quadrupole moments. We present test applications to
manganese and iron porphyrins representative of a large class of biologically
relevant metallorganic systems. Our results show that accurate
Density-Functional Theory calculations on systems with several hundred atoms
are feasible with access to moderate computational resources.Comment: 29 pages, 4 Postscript figures, revtex