We propose an architecture for generating natural language from Linked Data that automatically learns sentence templates and statistical document planning from parallel RDF datasets and text. We have built a proof-of-concept system (LOD-DEF) trained on un-annotated text from the Simple English Wikipedia and RDF triples from DBpedia, focusing exclusively on factual, non-temporal information. The goal of the system is to generate short descriptions, equivalent to Wikipedia stubs, of entities found in Linked Datasets. We have evaluated the LOD-DEF system against a simple generate-from-triples baseline and human-generated output. In evaluation by humans, LOD-DEF significantly outperforms the baseline on two of three measures: non-redundancy and structure and coherence.