first-principles numerical simulation model for crumpling of a stiff tethered
membrane is introduced. In our model membranes, wrinkles, ridge formation,
ridge collapse, as well as the initiation of stiffness divergence, are
observed. The ratio of the amplitude and wave length of the wrinkles, and the
scaling exponent of the stiffness divergence, are consistent with both theory
and experiment. We observe that close to the stiffness divergence there appears
a crossover beyond which the elastic behavior of a tethered membrane becomes
similar to that of dry granular media. This suggests that ridge formation in
membranes and force-chain network formation in granular packings are different
manifestations of a single phenomenon.Comment: For full resolution figures, please send us an emai