A 1/L-expansion for percolation problems is proposed, where L is the lattice
finite length. The square lattice with 27 different sizes L = 18, 22 ... 1594
is considered. Certain spanning probabilities were determined by Monte Carlo
simulations, as continuous functions of the site occupation probability p. We
estimate the critical threshold pc by applying the quoted expansion to these
data. Also, the universal spanning probability at pc for an annulus with aspect
ratio r=1/2 is estimated as C = 0.876657(45)