Abstract

Microscopic investigation is performed for intersite multipolar interactions in the orbitally degenerate Anderson lattice, with CeB6_6 taken as an exemplary target. In addition to the f0f^0 intermediate state, f2f^2 Hund's-rule ground states are included as intermediate states for the interactions. The conduction-band states are taken as plane waves and the hybridization as spherically symmetric. The spatial dependences of multipolar interactions are given by the relative weight of partial wave components along the pair of sites. It is clarified how the the anisotropy arises in the interactions depending on the orbital degeneracy and the spatial configuration. The stability of the Γ5\Gamma_5 antiferro-quadrupole order in the phase II of CeB6_6 is consistent with our model. Moreover, the pseudo-dipole interactions follow a tendency required by the phenomenological model for the phase III.Comment: 30 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020