One of the most tractable organisms for the study of nervous
systems is the nematode Caenorhabditis elegans, whose locomotion in
particular has been the subject of a number of models. In this paper we
present a first integrated neuro-mechanical model of forward locomotion.
We find that a previous neural model is robust to the addition of a
body with mechanical properties, and that the integrated model produces
oscillations with a more realistic frequency and waveform than the neural
model alone. We conclude that the body and environment are likely to
be important components of the worm’s locomotion subsystem