Aggregation of two oppositely charged colloids in salty water is studied. We
focus on the role of Coulomb interaction in strongly asymmetric systems in
which the charge and size of one colloid is much larger than the other one. In
the solution, each large colloid (macroion) attracts certain number of
oppositely charged small colloids (Z-ion) to form a complex. If the
concentration ratio of the two colloids is such that complexes are not strongly
charged, they condense in a macroscopic aggregate. As a result, the phase
diagram in a plane of concentrations of two colloids consists of an aggregation
domain sandwiched between two domains of stable solutions of complexes. The
aggregation domain has a central part of total aggregation and two wings
corresponding to partial aggregation. A quantitative theory of the phase
diagram in the presence of monovalent salt is developed. It is shown that as
the Debye-H\"{u}ckel screening radius rs decreases, the aggregation domain
grows, but the relative size of the partial aggregation domains becomes much
smaller. As an important application of the theory, we consider solutions of
long double-helix DNA with strongly charged positive spheres (artificial
chromatin). We also consider implications of our theory for in vitro
experiments with the natural chromatin. Finally, the effect of different shapes
of macroions on the phase diagram is discussed.Comment: 10 pages, 9 figures. The text is rewritten, but results are not
change