We address the post-collapse dynamics of a self-gravitating gas of Brownian
particles in D dimensions, in both canonical and microcanonical ensembles. In
the canonical ensemble, the post-collapse evolution is marked by the formation
of a Dirac peak with increasing mass. The density profile outside the peak
evolves self-similarly with decreasing central density and increasing core
radius. In the microcanonical ensemble, the post-collapse regime is marked by
the formation of a ``binary''-like structure surrounded by an almost uniform
halo with high temperature. These results are consistent with thermodynamical
predictions