The neuronal networks in the mammals cortex are characterized by the
coexistence of hierarchy, modularity, short and long range interactions,
spatial correlations, and topographical connections. Particularly interesting,
the latter type of organization implies special demands on the evolutionary and
ontogenetic systems in order to achieve precise maps preserving spatial
adjacencies, even at the expense of isometry. Although object of intensive
biological research, the elucidation of the main anatomic-functional purposes
of the ubiquitous topographical connections in the mammals brain remains an
elusive issue. The present work reports on how recent results from complex
network formalism can be used to quantify and model the effect of topographical
connections between neuronal cells over a number of relevant network properties
such as connectivity, adjacency, and information broadcasting. While the
topographical mapping between two cortical modules are achieved by connecting
nearest cells from each module, three kinds of network models are adopted for
implementing intracortical connections (ICC), including random,
preferential-attachment, and short-range networks. It is shown that, though
spatially uniform and simple, topographical connections between modules can
lead to major changes in the network properties, fostering more effective
intercommunication between the involved neuronal cells and modules. The
possible implications of such effects on cortical operation are discussed.Comment: 5 pages, 5 figure