An analytic representation of the short-range repulsion energy in ionic
systems is described that allows for the fact that ions may change their size
and shape depending on their environment. This function is extremely efficient
to evaluate relative to previous methods of modeling the same physical effects.
Using a well-defined parametrization procedure we have obtained parameter sets
for this energy function that reproduce closely the density functional theory
potential energy surface of bulk MgO. We show how excellent agreement can be
obtained with experimental measurements of phonon frequencies and temperature
and pressure dependences of the density by using this effective potential in
conjunction with ab initio parametrization.Comment: To appear in Journal of Chemical Physics (Oct 15th 2003