Photo-excitation band-structure engineering of 2H-NbSe2_2 probed by time- and angle-resolved photoemission spectroscopy

Abstract

We investigated the nonequilibrium electronic structure of 2H-NbSe2_2 by time- and angle-resolved photoemission spectroscopy. We find that the band structure is distinctively modulated by strong photo-excitation, as indicated by the unusual increase in the photoelectron intensities around EF_F. In order to gain insight into the observed photo-induced electronic state, we performed DFT calculations with modulated lattice structures, and found that the variation of the Se height from the Nb layer results in a significant change in the effective mass and band gap energy. We further study the momentum-dependent carrier dynamics. The results suggest that the relaxation is faster at the K-centered Fermi surface than at the Γ\Gamma-centered Fermi surface, which can be attributed to the stronger electron-lattice coupling at the K-centered Fermi surface. Our demonstration of band structure engineering suggests a new role for light as a tool for controlling the functionalities of solid-state materials.Comment: 7 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions