Fair allocation of indivisible goods under conflict constraints

Abstract

We consider the fair allocation of indivisible items to several agents and add a graph theoretical perspective to this classical problem. Thereby we introduce an incompatibility relation between pairs of items described in terms of a conflict graph. Every subset of items assigned to one agent has to form an independent set in this graph. Thus, the allocation of items to the agents corresponds to a partial coloring of the conflict graph. Every agent has its own profit valuation for every item. Aiming at a fair allocation, our goal is the maximization of the lowest total profit of items allocated to any one of the agents. The resulting optimization problem contains, as special cases, both {\sc Partition} and {\sc Independent Set}. In our contribution we derive complexity and algorithmic results depending on the properties of the given graph. We can show that the problem is strongly NP-hard for bipartite graphs and their line graphs, and solvable in pseudo-polynomial time for the classes of chordal graphs, cocomparability graphs, biconvex bipartite graphs, and graphs of bounded treewidth. Each of the pseudo-polynomial algorithms can also be turned into a fully polynomial approximation scheme (FPTAS).Comment: A preliminary version containing some of the results presented here appeared in the proceedings of IWOCA 2020. Version 3 contains an appendix with a remark about biconvex bipartite graph

    Similar works

    Full text

    thumbnail-image

    Available Versions