A quasi-polynomial algorithm for well-spaced hyperbolic TSP

Abstract

We study the traveling salesman problem in the hyperbolic plane of Gaussian curvature 1-1. Let α\alpha denote the minimum distance between any two input points. Using a new separator theorem and a new rerouting argument, we give an nO(log2n)max(1,1/α)n^{O(\log^2 n)\max(1,1/\alpha)} algorithm for Hyperbolic TSP. This is quasi-polynomial time if α\alpha is at least some absolute constant, and it grows to nO(n)n^{O(\sqrt{n})} as α\alpha decreases to log2n/n\log^2 n/\sqrt{n}. (For even smaller values of α\alpha, we can use a planarity-based algorithm of Hwang et al. (1993), which gives a running time of nO(n)n^{O(\sqrt{n})}.)Comment: SoCG 202

    Similar works

    Full text

    thumbnail-image

    Available Versions