Recent work in the domain of misinformation detection has leveraged rich
signals in the text and user identities associated with content on social
media. But text can be strategically manipulated and accounts reopened under
different aliases, suggesting that these approaches are inherently brittle. In
this work, we investigate an alternative modality that is naturally robust: the
pattern in which information propagates. Can the veracity of an unverified
rumor spreading online be discerned solely on the basis of its pattern of
diffusion through the social network?
Using graph kernels to extract complex topological information from Twitter
cascade structures, we train accurate predictive models that are blind to
language, user identities, and time, demonstrating for the first time that such
"sanitized" diffusion patterns are highly informative of veracity. Our results
indicate that, with proper aggregation, the collective sharing pattern of the
crowd may reveal powerful signals of rumor truth or falsehood, even in the
early stages of propagation.Comment: Published at The Web Conference (WWW) 202