Adaptive Greedy versus Non-adaptive Greedy for Influence Maximization

Abstract

We consider the \emph{adaptive influence maximization problem}: given a network and a budget kk, iteratively select kk seeds in the network to maximize the expected number of adopters. In the \emph{full-adoption feedback model}, after selecting each seed, the seed-picker observes all the resulting adoptions. In the \emph{myopic feedback model}, the seed-picker only observes whether each neighbor of the chosen seed adopts. Motivated by the extreme success of greedy-based algorithms/heuristics for influence maximization, we propose the concept of \emph{greedy adaptivity gap}, which compares the performance of the adaptive greedy algorithm to its non-adaptive counterpart. Our first result shows that, for submodular influence maximization, the adaptive greedy algorithm can perform up to a (1βˆ’1/e)(1-1/e)-fraction worse than the non-adaptive greedy algorithm, and that this ratio is tight. More specifically, on one side we provide examples where the performance of the adaptive greedy algorithm is only a (1βˆ’1/e)(1-1/e) fraction of the performance of the non-adaptive greedy algorithm in four settings: for both feedback models and both the \emph{independent cascade model} and the \emph{linear threshold model}. On the other side, we prove that in any submodular cascade, the adaptive greedy algorithm always outputs a (1βˆ’1/e)(1-1/e)-approximation to the expected number of adoptions in the optimal non-adaptive seed choice. Our second result shows that, for the general submodular cascade model with full-adoption feedback, the adaptive greedy algorithm can outperform the non-adaptive greedy algorithm by an unbounded factor. Finally, we propose a risk-free variant of the adaptive greedy algorithm that always performs no worse than the non-adaptive greedy algorithm.Comment: 26 pages, 0 figure, accepted at AAAI'20: Thirty-Fourth AAAI Conference on Artificial Intelligenc

    Similar works

    Full text

    thumbnail-image

    Available Versions