On proximal relations in transformation semigroups arising from generalized shifts

Abstract

For a finite discrete topological space XX with at least two elements, a nonempty set Ξ“\Gamma, and a map Ο†:Ξ“β†’Ξ“\varphi:\Gamma\to\Gamma, σφ:XΞ“β†’XΞ“\sigma_\varphi:X^\Gamma\to X^\Gamma with σφ((xΞ±)Ξ±βˆˆΞ“)=(xΟ†(Ξ±))Ξ±βˆˆΞ“\sigma_\varphi((x_\alpha)_{\alpha\in\Gamma})= (x_{\varphi(\alpha)})_{\alpha\in\Gamma} (for (xΞ±)Ξ±βˆˆΞ“βˆˆXΞ“(x_\alpha)_{\alpha\in\Gamma}\in X^\Gamma) is a generalized shift. In this text for S={ΟƒΟˆ:ΟˆβˆˆΞ“Ξ“}\mathcal{S}=\{\sigma_\psi:\psi\in\Gamma^\Gamma\} and H={ΟƒΟˆ:Ξ“β†’ΟˆΞ“\mathcal{H}=\{\sigma_\psi: \Gamma\mathop{\rightarrow}\limits^{\psi}\Gamma is bijective}\} we study proximal relations of transformation semigroups (S,XΞ“)(\mathcal{S},X^\Gamma) and (H,XΞ“)(\mathcal{H},X^\Gamma). Regarding proximal relation we prove: P(S,XΞ“)={((xΞ±)Ξ±βˆˆΞ“,(yΞ±)Ξ±βˆˆΞ“)∈XΓ×XΞ“:βˆƒΞ²βˆˆΞ“β€…(xΞ²=yΞ²)}P({\mathcal S},X^\Gamma)=\{((x_\alpha)_{\alpha\in\Gamma},(y_\alpha)_{\alpha\in\Gamma}) \in X^\Gamma\times X^\Gamma: \exists\beta\in\Gamma\:(x_\beta=y_\beta)\} and P(H,XΞ“)βŠ†{((xΞ±)Ξ±βˆˆΞ“,(yΞ±)Ξ±βˆˆΞ“)∈XΓ×XΞ“:{Ξ²βˆˆΞ“:xΞ²=yΞ²}P({\mathcal H},X^\Gamma)\subseteq \{((x_\alpha)_{\alpha\in\Gamma},(y_\alpha)_{\alpha\in\Gamma}) \in X^\Gamma\times X^\Gamma: \{\beta\in\Gamma:x_\beta=y_\beta\} is infinite~}βˆͺ{(x,x):x∈X}\}\cup\{ (x,x):x\in \mathcal{X}\}. \\ Moreover, for infinite Ξ“\Gamma, both transformation semigroups (S,XΞ“)({\mathcal S},X^\Gamma) and (H,XΞ“)({\mathcal H},X^\Gamma) are regionally proximal, i.e., Q(S,XΞ“)=Q(H,XΞ“)=XΓ×XΞ“Q({\mathcal S},X^\Gamma)=Q({\mathcal H},X^\Gamma)=X^\Gamma \times X^\Gamma, also for sydetically proximal relation we have L(H,XΞ“)={((xΞ±)Ξ±βˆˆΞ“,(yΞ±)Ξ±βˆˆΞ“)∈XΓ×XΞ“:{Ξ³βˆˆΞ“:xΞ³β‰ yΞ³}L({\mathcal H},X^\Gamma)=\{((x_\alpha)_{\alpha\in\Gamma},(y_\alpha)_{\alpha\in\Gamma}) \in X^\Gamma\times X^\Gamma: \{\gamma\in\Gamma:x_\gamma\neq y_\gamma\} is finite}\}.Comment: 8 page

    Similar works

    Full text

    thumbnail-image

    Available Versions