Control of Separable Subsystems with Application to Prostheses

Abstract

Nonlinear control methodologies have successfully realized stable human-like walking on powered prostheses. However, these methods are typically restricted to model independent controllers due to the unknown human dynamics acting on the prosthesis. This paper overcomes this restriction by introducing the notion of a separable subsystem control law, independent of the full system dynamics. By constructing an equivalent subsystem, we calculate the control law with local information. We build a subsystem model of a general open-chain manipulator to demonstrate the control method's applicability. Employing these methods for an amputee-prosthesis model, we develop a model dependent prosthesis controller that relies solely on measurable states and inputs but is equivalent to a controller developed with knowledge of the human dynamics and states.Comment: 8 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions