Planar graphs without normally adjacent short cycles

Abstract

Let G\mathscr{G} be the class of plane graphs without triangles normally adjacent to 8βˆ’8^{-}-cycles, without 44-cycles normally adjacent to 6βˆ’6^{-}-cycles, and without normally adjacent 55-cycles. In this paper, it is showed that every graph in G\mathscr{G} is 33-choosable. Instead of proving this result, we directly prove a stronger result in the form of "weakly" DP-33-coloring. The main theorem improves the results in [J. Combin. Theory Ser. B 129 (2018) 38--54; European J. Combin. 82 (2019) 102995]. Consequently, every planar graph without 44-, 66-, 88-cycles is 33-choosable, and every planar graph without 44-, 55-, 77-, 88-cycles is 33-choosable. In the third section, it is proved that the vertex set of every graph in G\mathscr{G} can be partitioned into an independent set and a set that induces a forest, which strengthens the result in [Discrete Appl. Math. 284 (2020) 626--630]. In the final section, tightness is considered.Comment: 19 pages, 3 figures. The result is strengthened, and a new result is adde

    Similar works

    Full text

    thumbnail-image

    Available Versions