We study the Proportional Response dynamic in exchange economies, where each
player starts with some amount of money and a good. Every day, the players
bring one unit of their good and submit bids on goods they like, each good gets
allocated in proportion to the bid amounts, and each seller collects the bids
received. Then every player updates the bids proportionally to the contribution
of each good in their utility. This dynamic models a process of learning how to
bid and has been studied in a series of papers on Fisher and production
markets, but not in exchange economies. Our main results are as follows:
- For linear utilities, the dynamic converges to market equilibrium utilities
and allocations, while the bids and prices may cycle. We give a combinatorial
characterization of limit cycles for prices and bids.
- We introduce a lazy version of the dynamic, where players may save money
for later, and show this converges in everything: utilities, allocations, and
prices.
- For CES utilities in the substitute range [0,1), the dynamic converges
for all parameters.
This answers an open question about exchange economies with linear utilities,
where tatonnement does not converge to market equilibria, and no natural
process leading to equilibria was known. We also note that proportional
response is a process where the players exchange goods throughout time (in
out-of-equilibrium states), while tatonnement only explains how exchange
happens in the limit.Comment: 25 pages, 6 figure